为什么HR必须要掌握People Analytics
Why an HR Professional Must use People Analytics
随着时间的流逝,人力资源得到了巨大的发展,并且日新月异。HR不仅涉及人的方面,而且随着时间的推移,越来越多地使用数据和技术,这是过去十年来出现的。Human resources has evolved greatly over time, and continues to do so with each passing day. Moving beyond just the human aspect, HR is over time working more and more with data and technology, something that came about over the past decade.
数据的重要作用及其对HR各方面的影响,是HR分析技术的诞生。按照Heuvel & Bondarouk,2016年的说法,是指 "系统地识别和量化业务结果的人的驱动因素,并将其量化。" 它探讨了捕捉、测量和组织人员信息的不同方法,以发掘对组织的人力资源战略有价值的见解。
一个组织如何使用人力资源分析?How does an organization use human resource analytics?
人事分析在促进人力资源部门为组织的战略决策做出更好的贡献方面发挥着至关重要的作用。它通常用于解决特定的挑战,例如。
HR收到的工作申请质量不高。
在过去一年中招聘的员工流失率激增
特定团队的生产力下降
HR对分析的具体用途是什么?What specific uses does HR have for analytics?
具体的挑战可能会有所不同,但利用人力资源分析的杠杆作用通常是其中之一。我们的想法是利用数据来。
用既定的指标标准来衡量组织的绩效。
观察并总结出应对所面临挑战的可能解决办法
根据假设的解决方案改变流程,以解决挑战。
监测变革的结果,以了解其效果如何,并对其进行调整,将其推广到其他流程中(如果在这里成功的话),或将其回退(如果未能实现目标的话)。
分析学对HR的工作有什么影响?How has analytics impacted the work of HR?
随着经济和人力资源团队的工作按照数字时代的要求不断发展,那些希望成为人力资源专业人员并在人力资源领域创造未来职业的人,在他们的工作中需要能够很好地与数据打交道,这也是他们在工作中所戴的许多帽子中的一个。他们必须能够利用人员分析来筛选数据,并得出有价值的见解,为组织提供战略方向。
下面列举了人力资源部门工作中受分析影响最大的具体领域。
·绩效和效率: 这些是最常见的监测指标,用来判断人力资源活动和流程的成功与否。例如,按来源追踪留用率,可能会发现,比如说内部招聘显示的留用率明显高于LinkedIn发布的职位。然后,HR专业人员可以重新组织他们的工作流程,将内部招聘优先于其他来源,从而提高HR工作的效率。通过类似的方式使用数据来跟踪工作流程的绩效和效率,可以对资源配置进行关键性的选择,从而将重点放在影响最大的领域。
·招聘和录用方面:无论是在时间上还是在金钱上,这些都是人力资源团队处理的最昂贵的活动之一。人力资源分析可以通过改善这些重要流程,在节约成本方面发挥重要作用。
例如,人力资源部门可以将成功地被本组织聘用的人和不成功的人的数据与未来招聘的人进行比较。这将有助于更好地判断该人是否适合当前的角色和组织文化,这两个关键因素。在第一次招聘的时候就能准确地判断出一个人是否合适,可以节省重新招聘的宝贵精力,并通过减少摩擦和更好的福利等措施,将更多的精力用在留住现有员工上。
·员工体验:人力资源部门的工作不仅仅是招聘员工来填补现有职位。他们的工作的一个重要部分是创造良好的员工体验,并努力改善员工的体验,因为快乐的员工总是更好地参与其中。这种参与度可以通过以下几个方面来帮助员工。
·提高生产力
·提高保留率
·实现更高的总体成功率
员工的出勤率、参与度和生产率只是人事分析可以跟踪的一些指标,可以更细致地了解员工的体验。这可以提出人力资源部门需要改进的地方,并能带来优化的福利、休假政策以及培训和发展机会。
"这不仅仅是招聘,还包括留住、激励和发展强大的员工。"东北大学人力资源管理硕士课程讲师Tom Penque说。"人力资源分析归结起来就是能够...........利用所有这些信息来改善组织和员工。"
以上由AI翻译,仅供参考
作者: Aileen Scott
观点
2020年05月10日
观点
耐克谈:什么是成功的候选人体验?为什么重要今天的招聘环境是非常受求职者驱动的。在过去,候选人会向10个或20个不同的公司提出申请,希望能在某个地方找到工作,但现在,10个或20个公司都会主动联系候选人,让他们来为他们工作。
考虑到这一点,候选人的体验是招聘过程中非常重要的一个方面。
什么是候选人体验?What is candidate experience?
它是指候选人在求职过程中与你的企业进行的所有互动,以及他们对你的企业的印象。它包括求职者与贵公司的每一个接触点,从对公司的认识和兴趣,到浏览和申请工作、面试过程、收到工作通知或被拒绝,最后到入职过程。
为什么说候选人体验很重要?Why is it important?
对于想要加入一家公司的求职者来说,求职者的经验可以很好地反映出被该公司录用的整体体验。您对待求职者的方式不仅对您的招聘成功与否有巨大的影响,而且对公司的品牌和底线也有很大的影响。
成功雇佣:随着需求量大于供给量,求职者在选择的时候会更加挑剔。你的公司和其他20家公司都在追求同一个候选人,作为一个组织,你需要从竞争对手中脱颖而出,赢得优秀的人才。
即使你的公司被卖给了一个求职者,也不意味着这个求职者被卖给了你的公司。候选人很可能会把招聘过程作为他们最终决定的重要部分。有几个因素会让正在决定多个工作机会的候选人望而却步。例如,如果申请过程太过混乱,或者面试过程不合理,或者招聘人员花了太长时间才提供任何更新的信息。
一个精简的求职者体验是真实的、体现出关怀的,这将提高招聘质量,减少招聘时间,提高录用率。
雇主品牌:这也是雇主品牌塑造的机会。雇主品牌是人们对应聘者和在公司工作的感受。即使只有一个求职者会得到这份工作,你的品牌也会给所有其他没有得到这个职位的求职者留下印象。如果他们有一个积极的体验,他们会出去宣传你的品牌,提高你的雇主声誉。然而,正如可以预料的那样,有不良体验的求职者会在网上和亲朋好友分享。
候选人的体验会影响到未来人们对该组织的看法,以及他们如何向其他人谈论该组织。
结果:有许多研究结果和数字表明,求职者的体验对公司的影响。如果求职者没有收到雇主的回信,不仅可能会被拒之门外,而且可能不会购买或支持该雇主的产品或服务。
有多少次你去过一家餐厅,他们的食物很好吃,但提供的顾客服务却很糟糕?你可能永远不会再去那家餐厅,甚至可能会更进一步,在大众点评上留下负面评论。
反过来说,一个正面的体验可能会导致那些求职者向该公司购买或使用他们的服务,而不管他们是否被录用。这就是为什么要注意到候选人的体验会影响公司的所有方式。
结论是什么?Conclusion
我最喜欢的一句话是来自美国作家布伦南-曼宁的名言---"在每一次相遇中,我们要么付出生命,要么耗尽生命;没有中立的交换。" 每一次互动,或大或小的互动,都会有正面或负面的影响。如何确保给候选人一个正面的、真实的体验,就看你怎么做了,一个精彩的候选人体验不是招聘人员一个人可以完成的。整个组织在帮助候选人做出加入公司的决定中起着重要作用。
以上由智能的AI翻译完成,仅供参考。
作者:Grace Yoon
观点
2020年05月10日
观点
如何建立一个优秀的人力资本分析(PA)团队How to build a people analytics team
正确地组成人力资本分析团队是解决业务问题的关键所在
"数据就是新的石油"。这句话很少有人记得自己第一次听到这句话的时间和地点,但现在很多人都会自信地点头同意。
事实上,这句话可以追溯到数据科学家(也是Tesco Clubcard背后的大脑)Clive Humby,他早在2006年就创造了这句话,用来解释今天数据的不可抗拒的价值。
Humby解释说,就像石油一样,"如果未经提炼,[数据]就不能真正被使用"。也就是说,数据要想有任何价值,就必须将其分解成更简单的形式并进行分析。
在人力资源领域,这个数据提炼过程同样重要。它通常被称为 "people analytics" 人力资本分析,多年来,它导致了人力资本分析团队的诞生。
不过,虽然它已经出现了一段时间,但人力资本分析的进展却一直很缓慢。德勤发布的《2019年人力资本趋势报告》发现,尽管企业对更好的数据管理产生了浓厚的兴趣(在2017年的报告中,71%的企业将人力资本分析列为高度优先考虑的事项),但仅有26%的企业有效利用技术和分析技术。
"如果我们坐进时光机,回到10年前,我当时说的是关于人力资本分析的事情。那是因为它仍然有一个未实现的潜力,"南加州大学马歇尔商学院有效组织中心的高级研究科学家Alec Levenson说。
"典型的情况是,人们把注意力集中在眼前的数据上,而不是想出正确的问题。他们会说'一定有什么东西我们可以从这些数据中学习到',是的,总会有一些洞察力。"他说。"但如果你只看数据,而不把它嵌入到更大的业务背景中去,问一些更大的问题,比如你想解决什么问题,那么它可能会把你带入死胡同、兔子洞和爱丽丝梦游仙境之类的冒险。"
施华洛世奇公司人力资本分析和数字人力资源总监Oliver Kasper补充说,团队过于专注于报告,而不是挖掘预测性或规范性分析的可能性。
"人力资本分析可以往两个方向发展,"他解释说。"一个方向是回顾过去,所以报告过去发生的事情。然后是展望未来的活动--这就是预测性和规范性分析。我会说只有1-2%的大公司在做第二个方向。
"而这就像在谈论蒸汽火车和电动车的区别。报告是蒸汽火车,预测性和预见性分析是电动汽车。"
那么,在数据的重要性只增不减的情况下,HR如何打造一支真正能带来业务成果的人力资本分析团队?
职权范围Remit
人力资源转型咨询公司LACE Partners的首席执行官Aaron Alburey说,首先,人力资源部门应该退一步,确定自己究竟想要从人力资本分析中得到什么,人力资源转型咨询公司LACE Partners的首席执行官说。
"这是关于理解这个职能的目的是什么,以及你一开始为什么要设置它,"他说。"在你明白你想覆盖什么以及如何覆盖之前,你无法理解你需要什么。"
在Facebook负责人力资本分析和劳动力战略的副总裁Alexis Fink看来,这个职能的目的应该有三个方面。"我试图沿着三个轴来思考这个问题。首先,沿着X轴,就是员工的生命周期。通过选拔、入职、员工态度和离职调研,从候选人库中的点点连接起来有很大的机会。她说:"Y轴是分析层面--个人、团队、组织、企业,甚至超越了组织的边界,延伸到行业、劳动力市场和社区。
"最后,Z轴是关于你使用数据的方式。你是在执行流程、做报告、分析寻找模式,还是创建能够有效推荐行动方案的算法?"
Levenson认为,看待人力资本分析团队的作用有 "两种非常不同的方式"。"一种是认为它只是一个数据处理功能。如果你这样建立一个人力资源分析团队,你就不用担心业务影响或成为真正的业务合作伙伴----从字面上看,你只是一个数据处理的黑猩猩。"他说。
"但如果你的目标是获得能够帮助业务其他部分更好地运行的洞察力,你就不能只是一个数据处理者。它需要的是洞察力,而不仅仅是人力资源的洞察力,而是业务的洞察力。"
后者--专注于业务数据和问题,而不仅仅是人力资源数据和问题--是团队应该努力的方向,德勤劳动力转型实践中的人力资本分析和劳动力规划专家领导David Fineman表示同意。"高影响力的人力资本分析发生在整个组织中的合作伙伴关系中,"他说。"分析应该专注于业务挑战,因此,人力资本分析团队应该从人力资源的角度出发,但他们应该专注于实现更广泛的组织目标。"
在施华洛世奇,这意味着人力资本分析团队在零售和生产两大部门的战略目标中发挥着重要作用。在零售部门,这涉及到利用人力资本分析来提高转化率,而在生产部门,则是为产品质量和生产效率提供信息。
"这些都是我们在幕后支持的关键业务挑战,"Kasper说。"我们不是为了解决纯粹的人力资源问题而存在。"
报告线 Reporting line
随着团队被期望从更广泛的业务角度出发,他们在组织中的位置也有待商榷。根据Fineman的说法,最常见的方法是由人力资源部门内的一个专门的团队负责人力资本分析,向人力资源部门领导汇报。"通常情况下,它是独立于报告小组之外,不一定是人力资源部门的一部分,而是直接向CHRO报告。"
Levenson同意这一点:"人力资本分析应该是一个卓越的中心,它可以向人力资源部门汇报,也可以向更大的分析小组汇报。"
虽然注意到这是一种远不常见的做法,但Alburey说,他曾见过一些人将业务运营和人力资源部门结合在一起创建一个团队,由人力资源部门和企业共同拥有。虽然 "这两种模式都不比其他模式好",但他觉得共管的方式可以帮助团队更贴近业务。
"在HR内部建立团队的风险在于,他们最终只为HR出具大量报告--他们更多的是以HR为中心来看待他们想看的东西,所以像人才数据和薪酬洞察之类的东西,他们不一定清楚自己能带来什么样的业务成果,因为他们离业务有点远,"他说。"如果把业务和HR结合在一起,就更容易找到需要解决的业务问题,并把工作导向业务成果。"
架构 Structure
报告线只是其中的一部分,团队的组成也很重要。"大多数人分析团队都很小--只有几个人--因此他们的结构相当不稳定,往往会有很多不同的变化。"Fink说。
然而,在较大的团队中,应该有更多的结构,Fineman说,他将该职能分解为四个不同的子团队:报告;数据科学、洞察和分析;数据治理;平台管理。 reporting; data science, insights and analysis; data governance; and platform management
这就需要多样化的工作角色。Alburey指出,需要一名数据经理、报告撰写者和业务分析主管。然而,有一个角色他很快就被否定了,那就是数据科学家。"很少有人分析团队需要一个真正的数据科学家--你可以从业务的其他部分获得这种专业知识,"他说。"如果你是一个真正的数据科学家,你需要大量的数据来工作,而没有足够的人数据--所以你需要一个数据经理,是的,但数据科学家呢?我不这么认为。"
Levenson也有这样的感慨,他同意 "一个纯粹的数据科学家是我最不愿意雇佣的人进入人力资本分析小组的人之一"。
"外面有一种印象,认为如果你只是雇佣一个数据科学家,他们就能解决你所有的问题,但他们不会。"他说。"你会把数据科学家放在一个面向客户的角色中,与企业中的人或CHRO交谈吗?这就是要问的试金石问题。而战略人员会说'绝对不会,因为他们不知道该说什么是正确的。"
技能集Skillsets
在Levenson看来,这与技术性的、分析性的角色和技能无关,而更多的是定性的、软性的技能,比如职业心理学。
"一个数据科学家通常不了解组织科学和企业如何运作,实际上你需要良好的职业心理学,"他说,"一个数据科学家通常不了解组织科学和企业如何运作,实际上你需要良好的职业心理学。"然后,你需要团队中的商业咨询技能--知道如何卷起袖子解决问题的人。
"这就是那句老话,即需要关注因果关系而不是相关性。除非有组织科学和商业咨询,否则你不会知道该问什么正确的问题来计算出正确的数字。"
在Fink眼中,正是这种无所不能的咨询专业知识在现在的大多数团队中都是紧缺的。"通常情况下,人们的分析团队真正的功能是提供服务,他们得到的很多请求都只是捕风捉影。他们可能提供了很好的服务,但他们回答的问题并不是特别有力,也不会导致行动。她说:"影响和咨询方面的专业知识对克服团队整体效率的这一障碍有很大帮助。
卡斯帕概述了团队需要的六大 "基石":
人的技能("比如金融知识");沟通技巧;咨询技巧;数据科学知识;隐私、道德和流程方面的人力资源知识;最后是工作心理学和行为科学知识。
(human skills (“like financial literacy”); communication skills; consulting skills; data science knowledge; HR knowledge in privacy, ethics and process; and, lastly, work psychology and behavioural science knowledge.)
"理想中的人都会具备这六种技能,但很多人只是具备一些,"他说。"这很好,但你确实需要团队中的这六种技能都要具备。"
寻觅人才Sourcing talent
但是,这种多样化的技能组合能在现有的人力资源专业人士中找到吗?不一定,Fineman说。"团队中的人学习领域知识很重要,但通常情况下,数据治理角色的人更多来自于IT和IT战略背景,"他说。
Fineman认为,人力资源背景对团队中的洞察力和分析角色会有帮助。鉴于这项工作涉及到作为分析团队和业务之间的接口,优秀的HRBP应该在这里茁壮成长。"这就是有趣的地方,因为团队中的洞察力和分析小组可能是HRBP职业道路上的一个台阶。"他说。
"他们的工作是既要把业务挑战的信息带进来,解决业务挑战,又要在另一边解释分析的结果。"
"这些同事是劳动力分析团队的眼睛和耳朵;他们可以利用自己的业务知识来识别业务挑战和项目,"劳埃德银行集团的人员洞察总监Andy Papworth同意这一点。
Fink指出,她所工作过的团队里有很多背景和专业知识,甚至超越了人力资源和IT领域。"她说:"一般来说,团队的核心成员都是研究生级别的工业和组织心理学家,也有其他社会科学背景的人,如认知、社会、教育和发展心理学、人类学、经济学或政府;有MBA和咨询背景的人,还有物理、化学、数学、工程、甚至地质学等硬科学背景的人。
"我见过真正有效的人来自于律师助理,或教书育人......或人力资源部门的一般角色。"
Fink告诫说,不要把人力资本分析团队建设成硬性的、快速的规则。"就像育儿一样,没有一个正确的方法来处理人力资本分析工作。我的团队的结构和章程反映了我当时所服务的组织的规模、复杂性、优先级、挑战和文化。"她说。
"人力资本分析工作的乐趣和令人兴奋的部分在于,它不是一刀切的。"
作者:Rachel Sharp 这篇文章刊登在2019年10月的《人力资源科技增刊》上。
以上由现金的AI翻译完成,HRTechChina发布仅供参考。
专访workday:如何使用数据和分析实现员工体验
和罗马一样,高绩效的团队不是一天建成的。但是,它们由数据构建。workday的领导力和组织有效性高级副总裁 Greg Pryor 分享了数据如何使员工能够做到最好工作。
建立高绩效团队的秘诀是什么?答案很简单:数据。最有创新精神的公司都会使用数据和分析方法来经常衡量员工的体验。这为企业提供了他们所需的洞察力,为员工创造一个能让他们发挥最佳工作能力的环境。但是,他们是如何衡量这些成功的条件的呢?我们负责领导力和组织效率的高级副总裁Greg Pryor分享了Workday自身员工体验的见解。以下是我们谈话的重点内容。
数据和技术的快速发展如何改变了员工的期望?
公司的体验与消费者的体验非常相似。无论我们在提供乘车服务或餐厅体验的反馈,我们作为消费者都会适当地训练自己问自己,"这种体验是好还是不好?"
将这种实时反馈体验转化为您的员工也很重要。对于我们Workday来说,我们每周五都会通过 "最佳工作日调查 "来衡量员工的感受。人们经常会说:"每周五?嗯,这似乎有点太频繁了。" 而我的回答是,"我们的员工一直都有重要的时刻。" 通过调查,我们已经收集了超过150万个数据点,实际上,我们可以看到,员工的体验比我们想象的要动态得多。
与用年度快照来了解员工体验不同,我们通过非常及时的员工情绪衡量标准来了解员工的状况,特别是在这个变化莫测的时代,我们知道人们的状况。通过每周一次的 "最佳工作日调查",我们每个季度都会轮流对整个调查的34个问题进行调查。有些公司可能一年或两年做一次,而我们实际上是一年做四次。
这使得我们能够进行我们所谓的文化冲刺,这让我们能够了解员工的体验,并尽快做出反应。由于我们掌握了元数据,我们可以看到,例如,我们是否在不同性别、不同年龄段、不同地域、不同种族背景的员工之间提供了类似的归属感体验。我们收集到的洞察力使我们能够帮助我们的员工领导将注意力集中在最有影响力的领域。
企业如何利用数据来更好地进行个性化的职场体验?
你必须专注于对人真正重要的东西,并牢记我们在消费体验的世界里处于什么位置。比如说,想想看交通情况。我手机上的GPS并不能告诉我整个湾区的交通状况是什么样子的,它告诉我回家的路线上的交通在哪里。这就是消费者的体验:高度相关。
现在,把它应用到你自己的环境中。在Workday的背景可以是:"我是普莱森顿的人际关系领导,负责下面的团队。" 然后,我们会查看数据并制定具体的行动方案。当我们为员工领导设计内容时,我们会根据他们团队的反馈,而不是平均数。在Workday,我们使用机器学习和其他数据分析来增强这些反馈,并提供高度相关的建议。我认为这将成为所有企业的一个越来越基本的要素。
在不确定时期,HR如何利用数据来快速提升员工体验?
无论目前的环境如何,敏捷性仍然是企业现在和未来的核心。我认为,我们最近刚刚得到了一剂大剂量的药,比我们预期的要大,但这种敏捷的能力将越来越重要。我们衡量的一个数据点是我们办公室员工的员工体验与在家或远程员工的员工体验的对比。由于 Workday 拥有这些元数据,我们知道--而且已经跟踪了一段时间--我们可以比较这两种体验。
考虑到最近的大流行病,我们只有一个明确的决定:让我们的员工远程工作,以保障他们的健康。但我们有数据表明,虽然我们必须要做一些工作,但总的来说,我们的员工领导和员工在支持远程工作方面有很好的记录。有了这些数据点,我们就可以进行调整,并知道我们在不同领域的比较,这样我们就可以更了解情况,从而更加灵活。
"Our aspiration is not to have a remarkable employee experience for some, but to have a remarkable employee experience for all."
Greg PryorSenior Vice President of Leadership and Organizational Effectiveness at Workday
"我们的愿望不是让一部分人拥有非凡的员工体验,而是让所有人都能拥有非凡的员工体验。"
Greg Pryor Workday公司领导力和组织效率高级副总裁
组织如何衡量一些难以量化的指标,如包容性和归属感?
得益于我们与Great Place to Work的良好合作关系,我们调查的六个问题都与我们所说的 "归属感指数 "有关。这些问题旨在衡量人们的包容和归属感。在我们的首席多元化官员Carin Taylor的出色领导下,我们的目标是在美国的性别、年龄、地域、职业水平和种族背景方面的差异不超过3%。
Carin用一个高中舞蹈的例子来解释包容性。包容意味着你被邀请参加舞会。然而,归属感是建立在 "我觉得我被邀请来跳舞吗?我觉得音乐能引起我的共鸣吗?我在舞池里感觉舒服吗?" 我们的诉求不是让一部分人拥有非凡的员工体验,而是让所有人都能拥有非凡的员工体验。我们利用 "归属感指数 "中的洞察力,努力确保每个人都能感受到被包容,并在某些人感觉不到的时候采取具体行动。
您对希望采用更多数据驱动的HR方法的领导者有什么建议吗?
我们通过我们的 "最佳workday脉动调查"(Best Workday Pulse Survey)创造了一种消费者的体验和期望,它是由数据的民主化驱动的。这其中最重要的是,我们将洞察力 "推送到边缘",并将其掌握在员工领导手中--在最重要的地方,我们可以采取行动。然后,我们让这些人根据数据做出正确的决策,并根据数据做出结果。我不知道我们如何才能提供这些洞察力。每个组织都必须以某种形式接受这一点,以便能够吸引、参与和启用最好的员工队伍。
以上来自workday,由智能的AI翻译完成,仅供参考。
原文标题:Using Data and Analytics to Enable the Employee Experience
作者:Ghadeer Redler
观点
2020年04月27日
观点
好文:HR如何更好的优化人员分析(People Analytics)
关键点:
人力资源部应更有意地收集整理工作场所数据
侧重于绩效预测指标而不是一般绩效审核
数据分析需要特定、明确的结果
这是数据时代,数据分析正在彻底改变人力资源。
埃森哲计算,从数字可用的工作场所数据的新来源来看,大型上市公司在美国有3.1万亿美元的收入机会。
但是,人力资源部是否准备好此机会?
长期以来,人力资源一直被视为"硬"数据的保管人,如用工成本、离职成本、缺勤率、劳动力成本等。所有这些信息都至关重要,但这些信息都是衡量业绩和生产力的滞后指标。等到数据出来的时候,再想改变策略已经太晚了。
HR可以---而且应该是----更有意地转化领先指标劳动力数据。要做到这一点,CHRO必须更加努力地推动核心人员分析,特别是在战略绩效和人才管理方面。对战略人力资源组织来说,维护数据的日子已经过去了。
CHRO必须更加努力地推动核心人员分析,尤其是在战略绩效和人才管理方面。
CHROs must drive core people analytics harder, particularly concerning strategic performance and talent management.
充分利用绩效领先指标 Fully Leverage Leading Indicators of Performance
战略分析需要领先指标和整理、综合和分析数据的能力。人力资源部还要求授权部门通过绩效分析实施真正的组织变革。但是,为了做到这一点,人力资源部门需要非常具体的数据。
例如,根据盖洛普的研究,只有29%的员工强烈认同他们的绩效评估是公平的,26%的员工强烈同意他们的绩效评估是准确的。然而,很少有人说,他们被管理的方式,激励他们做出色的工作。这些精细的详细信息与组织级绩效和增长问题一起出现。
人力资源部应了解其组织中每个指标的百分比。这些数据解释了预测绩效的因素(如员工敬业度、人才绩效、更替驱动因素等),帮助领导者了解在仍有机会时可以改变哪些因素。
但是,人力资源部门有很多方法可以帮助领导者真正利用预测分析的力量,并加快质量决策。但是,关键是要确定最少的员工和员工绩效指标,这些指标对关键结果提供最大的解释能力。根据我们的经验,以下步骤至关重要:
审核和组织来自多个来源和年份的现有数据到单个数据库(劳动力、运营和业务数据)。
利用高级分析确定哪些指标对关键业务成果(即营业额、生产率、销售额、盈利能力)以及数据质量最高的指标最可靠、最有指示性和预测性。
使用裁员指标的缩减列表来监控和预测业务绩效、通知战略更改以及确定干预和变革计划的优先级。重点回答有助于业务推动价值的基本问题。例如:我们如何有效地根据申请人数据预测特定职位的人才招聘质量?哪些因素增加了顶尖人才留在公司并继续表现的可能性?
领导者重视这种战略分析,因为它有助于他们做出正确的决策。尽管如此,人力资源部门需要更好地使用此类分析来讲述公司长期价值(与其战略目标一致)的故事,而不是仅基于描述性分析的狭隘的短期员工增强计划。
破解人才分析 Disrupt Talent Analytics
例如,考虑人才管理讨论。根据我们的经验,人才审查是经常、持续滥用的一个领域。长期以来,大多数公司都依赖于将人才分为"九盒"模式,这种模式将人才分为顶尖人才、一贯的超级明星或表现稳健的超级明星以及表现不佳的类别。
没什么不对的。但数据的质量和客观性令人担忧。
传统上,"高潜力"员工被评定为反映一组能力。员工的经理指定了该标签,但经理的评价往往充满了偏见。整个评估过程需要几个月才能完成。之后是无休止的等待行政投入,最后,个人发展计划的制定。与此同时,员工们也继续行动;发展投入迟迟或不相关。
漫长而繁琐的传统人才审查过程需要被打乱。首先是评估和分析更客观的潜在指标。但是,一旦完成了客观的审核,人力资源部门就可以更快地将评估洞察转化为真正的发展计划,特别是帮助顶尖人才的经理在与每位员工的辅导对话中定期使用这些见解。与现在一样,只有 23% 的员工强烈同意他们的经理提供有意义的反馈,让他们等待几个月才能进行有偏见的评估,这是提高绩效的可疑方法。
冗长、繁琐的传统人才评审流程需要被打乱。这要从评估和分析更客观的潜力指标开始。
The long, cumbersome traditional talent review process needs to be disrupted. This starts with the assessment and analysis of more objective indicators of potential.
谷歌(Google)是一家基于硬分析的所有决策的公司,为更好地利用数据提供了一个很好的例子。早期,Google 人员分析团队想出了一个算法来优化软件工程师的关键晋升决策。
该算法用于做出令人印象深刻的 90% 的促销决策。但是工程师们想要更高的透明度,而算法不是答案。因此,谷歌停止了该计划。公司知道人们应该做出决策,而分析只是为了用最可靠的见解来武装决策者。从本质上讲,拥有正确的数据与拥有足够的数据是需要记住的关键。
将数据分析与长期目标联系起来
HR 创新使用预测数据分析应具有明确定义的结果,所有项目都应采用。但是,为了达到最大效用,这些可交付成果需要与特定的客户、运营和业务成果以及组织层面的结果(如上市时间、缩短周期时间、快速产品创新或加速质量改进)相关联。
为了真正敏捷,人力资源必须超越结果,在领先指标(如客户和员工敬业度指标、人才和发展影响)上持续提高质量。这些是真正推动业务绩效的因素。
在客观数据的支持下,并在管理人员的实时支持下,人力资源部门可以做世界上所有分析都做不到的事情:导致可预测、可衡量、成功的结果。
直截了当地说,人力资源部门有潜力将危机转化为机会,但它必须首先能够将人员分析转化为业务决策。
作者:VIBHAS RATANJEE 来自盖洛普gallup.com
原文标题:How HR Can Optimize People Analytics
由AI翻译完成,仅供参考。欢迎交流