人员分析:为什么统计不是浪费时间
文/Erik van Vulpen
许多人力资源从业者都有人力资源管理研究或工业和组织心理学的背景,而这些研究严重依赖于向学生讲授统计数据。作为一名学生,通常很难想象为什么统计数据如此重要。特别是如果你不想成为一名学术研究人员,统计数据会让你感到浪费时间。我们大多数人都希望与人合作,只是“做”人力资源,与统计数据的相关性便开始缺失。
然而,正如大多数人员分析人士所知,人力资源中统计数据的应用是我们称之为人力资源分析的基础。了解统计数据,了解如何以不同方式查看数据,以及在需要时分析数据,有助于我们做出更好的决策。
事实上,这是我经常从统计学的学生那里听到的。在制定更好和基于证据的决策方面,没有什么比对基于统计数据的结论和基本理解更有帮助了。
人员分析统计
聚合多个系统的数据并创建HR指标的仪表板,如使用Excel,Power BI或R来制作可视化数据,是实现人员分析的重要步骤。
但是,如果事实证明您拥有的数据不具代表性,那么您的结论和决定会发生什么?如果您需要轻松检查数据的质量和准确性,并轻松删除偏差结果的错误异常值,该怎么办?能够系统地思考数据对于人员分析至关重要,并且知道如何检查相关性以及因果关系成为人员分析的核心。
统计上显着的异常值
统计数据是人员分析的重要组成部分,适用于各种分析。例如:
如果您的大多数人表现“满意”,您将如何区分好或坏的表现?对数据进行区分,以得出结论并充分理解,是人员分析不可或缺的。
或者,当您启动分析项目时,您是否发现数据有回归到正常平均值的趋势?分析项目通常是对组织中问题的响应,但这个问题可能是由数据中的偶发性异常值引起的。这意味着下次我们进行测量时,这个异常值将降低到正常水平,这被称为回归均值。
另一个例子是问卷的答复率。您上次参与调查是否在组织中的不同群体之间获得了相同的回复率?或者这是你没有检查的东西?要了解某些群体在您的调查中是否过多或不足,您可以使用一些相对简单的统计技术来检查这一点。
对于我们的读者,Daniel Kahneman的书《思考的慢与快》强调了对数据进行深思熟虑和系统思考的重要性。通常我们能够在看到信息后立即快速处理信息,但这会受到我们的偏见和其他情绪的影响。只有采取更加审慎和合乎逻辑的方法,我们才能开始做出更客观的决定。统计学的学生在这方面表现得更好,因为他们知道人们容易受到的许多谬误引导。
以上为AI翻译,内容仅供参考。
原文链接:People Analytics: Why Statistics Is Not a Waste of Time