• 王露颐
    卖引擎而非整车,「麦穗」想用人工智能、大数据帮招聘网站提高效率,英格玛HRTECH基金投资 在麦穗联合创始人王露颐看来,招聘主要有3个步骤,其一是为企业找到足够数量的候选人,因为基数大了,才能确保质量;其二是找准人,最后才是人岗匹配合不合适的问题。 按照王露颐的说法,麦穗并不是卖整车,而是给一些大型招聘网站、企业开发引擎,目前主要提供3大产品。其一是帮助招聘网站快速定位候选人,公司合作客户均具有较大体量,一般在内部都有着丰富简历。通过匹配求职人员简历和职位描述为企业找人。如果客户简历数量不够,公司也会从外部为其定制一定数量的简历。 首先会分析企业的基本情况、发展阶段、过往入职人选等特征来对需求方用人偏好形成一个完整画像。还会精细化分析和标注处理整段职位描述,并分析所处行业特征和标的企业的用人状况。麦穗会运用智能语义解析,切分并提取候选人简历的核心内容,形成150多个维度,来匹配企业的用人画像。这150多个维度包括候选人的期望薪资、期望的工作地点、到岗时间、简历新鲜度(候选人更新简历的频繁程度是和换工作的意愿成正比的)、学历状况、专业技能、工作经历等。 人才库盘活是近年来一个活跃话题,理想场景是当 HR 向外发布职位时,系统可以自动提示她自有人才库里已经有很多合适的候选人了。但是据欧美市场最大的求职网站 Indeed.com 的总裁 Chris Hyams 介绍,由于不同行业、不同工种之前存在许多“潜规则”,且很多职位的 JD 还是不能标准化、模型化,该技术的实际应用还是存在一定问题。 仅仅通过职位 JD 和候选人简历去匹配供需双方,这个显然是不够的,因为很多时候职位与职位间的描述是比较相似的,并不能精确匹配,利用简历数据所做的只能是一个“冷启动模型”,后续还要通过不断添加数据维度来精细化该模型。麦穗的第二个业务是为该模型添加了类似电商的用户行为数据分析。 具体来说,麦穗会分析企业的职位发布者在招聘网站上的历史行为数据,比如关注了哪些候选人、拉黑了哪些候选人、搜索查看过哪些候选人,付费买过哪些候选人的联系方式。通过在推荐模型中添加用户行为数据,匹配的维度自然会更多。使用越多,产生的数据越多,匹配自然也就更加精准。 以上两款产品均是重大数据,轻 AI 的产品。麦穗在今年试点性地推出了一款视频面试类产品,据王露颐介绍,该款产品集成了机器学习和深度探测模型来探测候选人的软性素质,方法是通过探测候选人在面试时的肢体动作和面部表情,来对候选人打分。比方说团队会通过一套数据模型,从中产生6000多个维度,来定义什么是“领导能力”。在匹配候选人面试时的表现,挑选出“领导力”强的候选人。 据悉麦穗是由英格玛HRTECH基金投资。 来源:36氪,作者:徐宇。
    王露颐
    2017年12月29日